library(tidyverse)
library(sf)Overview
US Map of Artists by states distribution. Data is from TidyTuesday 2022 week 39 US Artists.
# set the fonts
library(showtext)
library(sysfonts)
library(extrafont)
showtext::showtext_auto()
showtext::showtext_opts(dpi=320)
font_add_google(name="Syne Mono",
family="Syne Mono")artists <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-09-27/artists.csv')
states <- map_data("state")
states <- rnaturalearth::ne_states(country ="united states of america",
returnclass = "sf") %>%
filter(!name=="Alaska")states%>%
ggplot()+
geom_sf()my_states <- artists%>%
count(state)%>%
pull(state)artists1 <- artists%>%
rename(name=state)%>%
group_by(race) %>%
mutate(artists_avg=log10(mean(artists_n,na.rm = TRUE)))%>%
ungroup()
artists1%>%DataExplorer::profile_missing()full <- states %>%
filter(name%in%my_states) %>%
merge(artists1,by="name")full %>%
ggplot()+
geom_sf(aes(fill=artists_avg))+
scico::scale_fill_scico("N.Artists")+
coord_sf(xlim = c(-130,-60))+
labs(title="US Artists",
subtitle="states distribution by avg numbers (log tranf)",
caption = "#30DayMapChallenge 2022 Day 27: Music\nDataSource: #TidyTuesday 2022 week 39 US Artists | Map: Federica Gazzelloni (@fgazzelloni)")+
ggthemes::theme_map()+
theme(text = element_text(family="Syne Mono"),
legend.background = element_blank(),
plot.background = element_rect(color="#6b493e",linewidth=1.5))ggsave("day27_music.png",
dpi=280,
width = 8.47,
height =5.07)