GIST

Author

Federica Gazzelloni

To cite Federica’s work, please use: Gazzelloni F., 2023 Data Visualization GIST

Source of original design: https://earthobservatory.nasa.gov/world-of-change/global-temperatures#:~:text=According%20to%20an%20ongoing%20temperature,1.9%C2%B0%20Fahrenheit)%20since%201880.

library(tidyverse)
tuesdata <- tidytuesdayR::tt_load(2023, week = 28)
tuesdata$global_temps%>%head
# A tibble: 6 × 19
   Year   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1  1880 -0.19 -0.25 -0.09 -0.17 -0.1  -0.21 -0.18 -0.11 -0.15 -0.24 -0.22 -0.18
2  1881 -0.2  -0.15  0.03  0.05  0.05 -0.19  0    -0.04 -0.16 -0.22 -0.19 -0.08
3  1882  0.16  0.13  0.04 -0.16 -0.14 -0.22 -0.17 -0.08 -0.15 -0.24 -0.17 -0.36
4  1883 -0.3  -0.37 -0.13 -0.19 -0.18 -0.08 -0.08 -0.14 -0.23 -0.12 -0.24 -0.11
5  1884 -0.13 -0.09 -0.37 -0.4  -0.34 -0.35 -0.31 -0.28 -0.28 -0.25 -0.34 -0.31
6  1885 -0.59 -0.34 -0.27 -0.42 -0.45 -0.44 -0.34 -0.32 -0.29 -0.24 -0.24 -0.11
# ℹ 6 more variables: `J-D` <dbl>, `D-N` <dbl>, DJF <dbl>, MAM <dbl>,
#   JJA <dbl>, SON <dbl>

Global Temperature Anomalies

Anomalies are calculated with respect to the 1951-1980 climatology.

Global Temperatures are in C° degrees, what we see here is the difference in temperature as a result of an application of a model to estimate the mean difference in temperatures with respect to 1951-1980 time-frame.

global_temps <- tuesdata$global_temps
global_temps%>%select(1:13)%>%summary()
      Year           Jan                Feb               Mar          
 Min.   :1880   Min.   :-0.81000   Min.   :-0.6300   Min.   :-0.63000  
 1st Qu.:1916   1st Qu.:-0.24000   1st Qu.:-0.2400   1st Qu.:-0.22250  
 Median :1952   Median :-0.01500   Median :-0.0400   Median : 0.01500  
 Mean   :1952   Mean   : 0.06333   Mean   : 0.0709   Mean   : 0.08889  
 3rd Qu.:1987   3rd Qu.: 0.31000   3rd Qu.: 0.3825   3rd Qu.: 0.32250  
 Max.   :2023   Max.   : 1.18000   Max.   : 1.3700   Max.   : 1.36000  
                                                                       
      Apr                May                Jun                Jul          
 Min.   :-0.58000   Min.   :-0.55000   Min.   :-0.52000   Min.   :-0.51000  
 1st Qu.:-0.25000   1st Qu.:-0.24000   1st Qu.:-0.25000   1st Qu.:-0.19000  
 Median :-0.02500   Median :-0.04000   Median :-0.05000   Median :-0.03000  
 Mean   : 0.06368   Mean   : 0.05292   Mean   : 0.03315   Mean   : 0.05587  
 3rd Qu.: 0.28250   3rd Qu.: 0.27250   3rd Qu.: 0.24000   3rd Qu.: 0.23500  
 Max.   : 1.13000   Max.   : 1.02000   Max.   : 0.93000   Max.   : 0.94000  
                                       NA's   :1          NA's   :1         
      Aug                Sep                Oct               Nov          
 Min.   :-0.55000   Min.   :-0.58000   Min.   :-0.5800   Min.   :-0.55000  
 1st Qu.:-0.22000   1st Qu.:-0.19000   1st Qu.:-0.2000   1st Qu.:-0.17500  
 Median :-0.05000   Median :-0.06000   Median : 0.0100   Median : 0.02000  
 Mean   : 0.05441   Mean   : 0.05818   Mean   : 0.0842   Mean   : 0.07776  
 3rd Qu.: 0.23500   3rd Qu.: 0.24000   3rd Qu.: 0.2450   3rd Qu.: 0.23000  
 Max.   : 1.02000   Max.   : 0.99000   Max.   : 1.0900   Max.   : 1.11000  
 NA's   :1          NA's   :1          NA's   :1         NA's   :1         
      Dec          
 Min.   :-0.82000  
 1st Qu.:-0.22000  
 Median :-0.04000  
 Mean   : 0.05182  
 3rd Qu.: 0.30500  
 Max.   : 1.16000  
 NA's   :1         

Historical spatial variations in surface temperature anomalies are derived from historical weather station data and ocean data from ships, buoys, and other sensors. Uncertainties arise from measurement uncertainty, changes in spatial coverage of the station record, and systematic biases due to technology shifts and land cover changes.1

The differencing applied to the estimated mean values are used to calculate the yearly rate of change in percentage value.

\[\text{rate of change}=\frac{y_2-y_1}{x_2-x_1}\]

diff <- global_temps %>%
  select(1:13) %>% # count(Year) 1880 - 2023
  pivot_longer(cols = -Year)%>%
  mutate(color=ifelse(value>0,"up","down"))%>%
  # grouping by Year, data are reframed to obtain a new vector
  group_by(Year)%>%
  # with the average values of the anomalies estimations
  reframe(avg_val=mean(value))%>%
  # the yearly rate of change in temperature anomalies
  mutate(diff=c(0,diff(avg_val))*100)

diff%>%summary()
      Year         avg_val              diff         
 Min.   :1880   Min.   :-0.48333   Min.   :-25.4167  
 1st Qu.:1916   1st Qu.:-0.19833   1st Qu.: -7.2917  
 Median :1952   Median :-0.05750   Median :  2.0000  
 Mean   :1952   Mean   : 0.06021   Mean   :  0.7494  
 3rd Qu.:1987   3rd Qu.: 0.26583   3rd Qu.:  8.6667  
 Max.   :2023   Max.   : 1.02083   Max.   : 27.5000  
                NA's   :1          NA's   :1         
summary(diff$avg_val)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
-0.48333 -0.19833 -0.05750  0.06021  0.26583  1.02083        1 

Here we see the application:

\[\text{rate ratio}=\frac{y_{t+1}}{y_{t}}\]

rates_df <- diff%>%
  mutate(abs_lag=abs(lag(avg_val)),
         rate_change=diff/abs_lag,
         rr= avg_val/lag(avg_val))

rates_df%>%head
# A tibble: 6 × 6
   Year avg_val   diff abs_lag rate_change     rr
  <dbl>   <dbl>  <dbl>   <dbl>       <dbl>  <dbl>
1  1880 -0.174    0    NA             NA   NA    
2  1881 -0.0917   8.25  0.174         47.4  0.526
3  1882 -0.113   -2.17  0.0917       -23.6  1.24 
4  1883 -0.181   -6.75  0.113        -59.6  1.60 
5  1884 -0.288  -10.7   0.181        -59.0  1.59 
6  1885 -0.338   -5.00  0.288        -17.4  1.17 
rates_df%>%
  ggplot(aes(x=Year,y=avg_val))+
  geom_rect(xmin=1938,xmax=1980,ymin=-Inf,ymax=Inf,alpha=0.1,fill="grey")+
  geom_rect(xmin=1951,xmax=1980,ymin=-Inf,ymax=Inf,alpha=0.1,fill="grey60")+
  geom_line()+
  geom_line(aes(y=rr/100),
            color="darkred",
            inherit.aes = T)+
  scale_x_continuous(n.breaks = 10)
Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_line()`).
Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_line()`).

rates_df%>%
  filter(Year>= 1980)%>%
  select(rr)%>%
  map_dbl(\(rr) mean(rr,na.rm = T))
      rr 
1.093974 

Considering all temperatures anomalies from 1978 to 2023, on average the steady increase is about 1.6% percent rate.

diff%>%
  drop_na()%>%
  filter(Year> 1977)%>%
  select(diff)%>%
  map_dbl(\(diff) mean(diff))
diff 
 1.6 

The line plot shows yearly temperature anomalies from 1880 to 2023.

Estimate of temperature change that could be compared with predictions of global climate change in response to atmospheric carbon dioxide, aerosols, and changes in solar activity.

These in situ measurements are analyzed using an algorithm that considers the varied spacing of temperature stations around the globe and urban heat island effects.

global_temps %>%
  select(1:13) %>% # count(Year) 1880 - 2023
  pivot_longer(cols = -Year) %>%
  mutate(color=ifelse(value>0,"up","down")) %>%
  # group_by(Year)%>%
  # reframe(avg_val=mean(value))%>%
  ggplot(aes(x=Year,y=value,group=name,color=name))+
  geom_line(linewidth=0.3)+
  geom_smooth(se=F,linewidth=0.1)+
  scale_x_continuous(n.breaks = 10)+
  scale_color_manual(values = RColorBrewer::brewer.pal(12,"Paired"))+
  labs(color="Time(Month)")+
  ggthemes::theme_fivethirtyeight()

diff %>%
ggplot(aes(x=Year,y=diff))+
  geom_line(color="darkred",
            linewidth=0.5)+
  geom_hline(yintercept = 0)
Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_line()`).

global_temps2 <- global_temps %>%
  select(1:13) %>% # count(Year) 1880 - 2023
  pivot_longer(cols = -Year) %>%
  mutate(color=ifelse(value>0,"up","down")) 

global_temps2 %>% head
# A tibble: 6 × 4
   Year name  value color
  <dbl> <chr> <dbl> <chr>
1  1880 Jan   -0.19 down 
2  1880 Feb   -0.25 down 
3  1880 Mar   -0.09 down 
4  1880 Apr   -0.17 down 
5  1880 May   -0.1  down 
6  1880 Jun   -0.21 down 

An approximate explanation:

set.seed(1234)
train_id <-  sample_frac(tibble(id=row_number(global_temps2)),0.8)
training <- global_temps2[pull(train_id),]
testing <-  global_temps2%>%anti_join(training)
Joining with `by = join_by(Year, name, value, color)`
fit<- lm(value ~ Year, data=training)
summary(fit, show.intercept= FALSE)

Call:
lm(formula = value ~ Year, data = training)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.51002 -0.14967 -0.01338  0.14390  0.79641 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1.544e+01  2.623e-01  -58.86   <2e-16 ***
Year         7.942e-03  1.344e-04   59.09   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2062 on 1374 degrees of freedom
  (6 observations deleted due to missingness)
Multiple R-squared:  0.7176,    Adjusted R-squared:  0.7174 
F-statistic:  3492 on 1 and 1374 DF,  p-value: < 2.2e-16
broom::augment(fit)%>%head
# A tibble: 6 × 9
  .rownames value  Year .fitted  .resid     .hat .sigma    .cooksd .std.resid
  <chr>     <dbl> <dbl>   <dbl>   <dbl>    <dbl>  <dbl>      <dbl>      <dbl>
1 1          0.52  1988  0.351   0.169  0.00130   0.206 0.000438        0.819
2 2         -0.21  1964  0.161  -0.371  0.000797  0.206 0.00129        -1.80 
3 3         -0.07  1973  0.232  -0.302  0.000930  0.206 0.00100        -1.47 
4 4          0.18  1963  0.153   0.0273 0.000787  0.206 0.00000693      0.133
5 5          0.05  1931 -0.101   0.151  0.000899  0.206 0.000243        0.735
6 6         -0.11  1955  0.0891 -0.199  0.000733  0.206 0.000342       -0.966
broom::augment(fit)%>%
  left_join(global_temps2,by=c("Year","value"))%>%
  ggplot(aes(x=Year,value,group=name))+
  geom_line(color="steelblue",linewidth=0.5)+
  geom_line(aes(y=.fitted),inherit.aes = T)
Warning in left_join(., global_temps2, by = c("Year", "value")): Detected an unexpected many-to-many relationship between `x` and `y`.
ℹ Row 2 of `x` matches multiple rows in `y`.
ℹ Row 1534 of `y` matches multiple rows in `x`.
ℹ If a many-to-many relationship is expected, set `relationship =
  "many-to-many"` to silence this warning.

predict(fit,newdata = tibble(Year=c(2024,2025,2026)))
        1         2         3 
0.6371218 0.6450638 0.6530059 
prediction<- tibble(Year=c(2024,2025,2026),
                    pred=predict(fit,
                                 newdata = tibble(Year=c(2024,2025,2026))))

broom::augment(fit)%>%
  left_join(global_temps2,by=c("Year","value"))%>%
  ggplot(aes(x=Year,value))+
  geom_line(aes(group=name),color="steelblue",linewidth=0.5)+
  geom_line(aes(y=.fitted),inherit.aes = T)+
  geom_line(data=prediction, mapping=aes(x=Year,y=pred),color="darkred")
Warning in left_join(., global_temps2, by = c("Year", "value")): Detected an unexpected many-to-many relationship between `x` and `y`.
ℹ Row 2 of `x` matches multiple rows in `y`.
ℹ Row 1534 of `y` matches multiple rows in `x`.
ℹ If a many-to-many relationship is expected, set `relationship =
  "many-to-many"` to silence this warning.

tag<-tibble(tag_history= c("The basic GISS temperature analysis scheme was defined in the late 1970s by James Hansen when a method of estimating global temperature change was needed for comparison with one-dimensional global climate models."),
            tag_stats = c("According to an ongoing temperature analysis led by scientists at NASA's Goddard Institute for Space Studies (GISS), the average global temperature on Earth has increased by at least 1.1° Celsius (1.9° Fahrenheit) since 1880."),
            tag_reading =c("How to read this graph: The dashed-line depicts the average Global temperature with a one-year lag. The bars represent temperature anomalies estimated with respect to the 1951-1980 climatology."))
library(grid)

global_temps2 %>%
  ggplot(aes(x=Year,y=value))+
  geom_line(data=diff,
            mapping=aes(x=Year,y=diff),
            inherit.aes = F,
            linetype="dashed",
            color="red",
            linewidth=0.05)+
  geom_rect(xmin=1951,xmax=1980,
                ymin=-4,ymax=4,
            #fill="grey70",
            alpha=0.8)+
  geom_col(aes(fill=color))+
  ggthemes::theme_fivethirtyeight()

global_temps2 %>%
  ggplot(aes(x=Year,y=value))+
  geom_line(data=diff,
            mapping=aes(x=Year,y=diff),
            inherit.aes = F,
            linetype="dashed",
            color="grey80",
            linewidth=0.1)+
  geom_rect(xmin=1951,xmax=1980,
                ymin=-4,ymax=4,
            alpha=0.8)+
  geom_col(aes(fill=color))+
  geom_segment(aes(x=min(Year)-1,xend=min(Year)-1,
                   y=0,yend=-10),
               color="grey70",
               linewidth=1.5,
               lineend="butt",
               arrow=arrow(length = unit(0.1, "inches")))+
  geom_segment(aes(x=max(Year)+1,xend=max(Year)+1,
                   y=0,yend=10),
               color="grey70",
               linewidth=1.5,
               lineend="butt",
               arrow=arrow(length = unit(0.1, "inches")))+
  geom_segment(aes(x=1940,xend=1940,
                 y=0,yend=10),
               color="grey70",
               linewidth=0.5,
               lineend="butt",
               arrow=arrow(length = unit(0.1, "inches")))+
  geom_segment(aes(x=1957,xend=1957,
               y=0,yend=10),
             color="grey70",
             linewidth=0.5,
             lineend="butt",
             arrow=arrow(length = unit(0.1, "inches")))+
   geom_segment(aes(x=1979,xend=1979,
              y=0,yend=-10),
             color="grey70",
             linewidth=0.5,
             lineend="butt")+
  ggtext::geom_textbox(data = tag,aes(x=1979,y=-15,label = tag_stats),
                     size = 3, 
                     family="Roboto Condensed",
                     width = unit(20, "line"), 
                     alpha = 0.9,
                     color="grey70",
                     fill="grey4",
                     box.colour = "grey70") +
  ggtext::geom_textbox(data = tag,aes(x=1920,y=-25,label = tag_reading),
                     size = 3, 
                     family="Roboto Condensed",
                     width = unit(20, "line"), 
                     alpha = 0.9,
                     color="grey70",
                     fill="grey4",
                     box.colour = "grey4") +
  geom_hline(yintercept = 0,linewidth=2,color="grey70")+
  geom_vline(xintercept = 1951,color="red",alpha=0.2)+
  geom_vline(xintercept = 1980,color="red",alpha=0.2)+
  scale_x_continuous(n.breaks = 10)+
  scale_y_continuous()+
  annotate(geom = "text",
         family="Roboto Condensed",
         fontface="bold",
         label="Global Surface\nTemperatures Anomalies\n1880 - 2023",
         size=12,
         color="grey70",
         hjust=0,
         x = 1880 ,y =c(21) )+
  annotate(geom = "text",
         family="Roboto Condensed",
         fontface="bold",
         label="First rise\nto previous year in 1940 ",
         size=3,
         color="grey70",
         hjust=0,
         x = 1941 ,y =c(13) )+
  annotate(geom = "text",
        family="Roboto Condensed",
        fontface="bold",
        label="Second big rise\nto previous year in 1957",
        size=3,
        color="grey70",
        hjust=0,
        x = 1959 ,y =c(7) )+
  annotate(geom = "text",
      family="Roboto Condensed",
      fontface="bold",
      label="Steady average rise of 1.09°C\nsince 1979",
      size=3,
      color="grey70",
      hjust=0,
      x = 1980 ,y =c(-7) )+
  annotation_custom(grob = grid::circleGrob(x=0,y=0.1,gp=gpar(col="grey70",fill=NA)),
                    xmin = 1940,
                    xmax = 1950,
                    ymin = 0,ymax = 10)+
  ggthemes::scale_fill_fivethirtyeight()+
  labs(title="",
       caption = "\nDataSource: NASA GISS Surface Temperature Analysis (GISTEMP v4)\nDataViz: #TidyTuesday 2023 - week 28 by Federica Gazzelloni\n",
       fill="Temperature",
       y="Monthly Means")+
  theme_void()+
  theme(text=element_text(color="grey70",family="Roboto Condensed"),
        plot.caption = element_text(hjust = 0.5,lineheight = 1),
        axis.text.x = element_text(color="grey70"),
        plot.background = element_rect(color="grey4",
                                       fill="grey4"),
        legend.position = "bottom",
        legend.title = element_text(color="black"),
        legend.text = element_text(color="black"),
        legend.background = element_rect(color="grey70",fill="grey70"))

ggsave("w28_GIST.png")
Saving 7 x 5 in image
Warning in geom_segment(aes(x = min(Year) - 1, xend = min(Year) - 1, y = 0, : All aesthetics have length 1, but the data has 1728 rows.
ℹ Please consider using `annotate()` or provide this layer with data containing
  a single row.
Warning in geom_segment(aes(x = max(Year) + 1, xend = max(Year) + 1, y = 0, : All aesthetics have length 1, but the data has 1728 rows.
ℹ Please consider using `annotate()` or provide this layer with data containing
  a single row.
Warning in geom_segment(aes(x = 1940, xend = 1940, y = 0, yend = 10), color = "grey70", : All aesthetics have length 1, but the data has 1728 rows.
ℹ Please consider using `annotate()` or provide this layer with data containing
  a single row.
Warning in geom_segment(aes(x = 1957, xend = 1957, y = 0, yend = 10), color = "grey70", : All aesthetics have length 1, but the data has 1728 rows.
ℹ Please consider using `annotate()` or provide this layer with data containing
  a single row.
Warning in geom_segment(aes(x = 1979, xend = 1979, y = 0, yend = -10), color = "grey70", : All aesthetics have length 1, but the data has 1728 rows.
ℹ Please consider using `annotate()` or provide this layer with data containing
  a single row.
Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_line()`).
Warning: Removed 7 rows containing missing values or values outside the scale range
(`geom_col()`).

Footnotes

  1. Source: https://pubs.giss.nasa.gov/abs/le05800h.html↩︎